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ABSTRACT
Community Radio Stations are short range FM radio sta-
tions that attempt to meet the information needs of com-
munities situated around them. While the concept of com-
munity radio is not new, the widespread proliferation of mo-
bile phones has generated renewed interest in using phones
in conjunction with radio for closer community engagement.
Radio stations in developing regions are keenly looking for
solutions to do this efficiently, as well as solve several other
ICT challenges including content management, fault diagno-
sis, and reduced cost of setup. We have designed the Gramin
Radio Inter Networking System (GRINS) to address these
issues. In this paper, we describe the GRINS architecture,
experimental setups to evaluate audio performance on low-
cost commodity hardware, and a formally expressible frame-
work to describe and diagnose radio station configurations.
Our techniques and insights can serve to help other techno-
logical interventions meant for developing regions.

1. INTRODUCTION
Social media such as blogs, video and photo sharing web-

sites, and online social networks have greatly influenced the
ways in which people share knowledge, socialize, and express
themselves. Often this has led to improved accountability
and transparency in governance, better access to employ-
ment options, and greater awareness about current issues of
global importance. How can similar tools for social media be
made available in the context of developing regions, where
literacy and network connectivity are significant challenges?
We explore the medium of community radio in this paper,
which just like its social media counterparts of blogs and
content sharing websites, serves to strengthen information
flow within and across communities.

CR stations are short range FM radio stations that cater
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to the information needs of communities living in the sur-
rounding areas. These stations are typically setup and op-
erated by non profit organizations or the local communities
themselves. Community participation is an integral part of
CR station activities with programs centered around discus-
sions on local civic amenities, health and hygiene, advice on
common economic activities such as agriculture, and even
local folk songs and cultural events. The participatory phi-
losophy of CR stations, and the use of voice as the communi-
cation medium, makes CR an attractive tool for empowering
rural communities.

Although community radio has been around since the
1920s [8], a new opportunity to enhance the medium presents
itself with the growing proliferation of mobile phones in de-
veloping regions and access to low-cost IT infrastructure.
Combining the broadcast medium with telephony can enable
CR stations to crowd-source feedback from stations, build
more interactive programs, and obtain ideas for new pro-
grams. CR stations are keen to make use of these technolo-
gies to engage better with their communities and smoothen
the day-to-day operations of their station, but no low-cost
and comprehensive solutions exist currently. The stations
therefore often end up with an ad-hoc mix of technologies
that were not designed for CR stations, making them com-
plex and hard to use. We have designed GRINS specifically
in the context of rural community radio stations to provide
an end-to-end solution to radio station automation. Based
on preliminary surveys and visits to several CR stations in
India and elsewhere, we focus on four specific goals that our
ICT intervention for CR stations should address:

Seamless integration of communication technologies:
Community participation in radio station activities is one of
the primary guidelines for operating CR stations. To en-
able and foster this participation, stations are keen to use
telephony and SMS to engage with their communities. How-
ever, many stations use inefficient mechanisms, for example,
to record phone calls by holding the phone next to a hand-
held recorder, or to manually read and log SMS messages
in notebooks. Integration of radio content, telephony, and
SMS into a single cohesive automated system can greatly
simplify the running of these CR stations.

Low cost: CR stations have limited access to advertising
or other sources of revenue because their catchment area is



small (10-15 km in the Indian context) and often economi-
cally under-developed. The stations are therefore very sen-
sitive to the cost of any intervention. Any solution should
preferably make use of low-end commodity hardware to keep
costs low, but not compromise on audio quality or hamper
other functions of the station.

Figure 1: An image showing audio connection setup
at Radio Bundelkhand

Flexibility in deployment: Different CR stations require
different setups. For example, a newly established CR sta-
tion with limited funds may choose to perform all its tasks
on a single low-end machine, but older or bigger stations
may want to handle many phone lines in parallel or manage
a large content database and will require a more extensive
setup. Similarly, we have seen that stations that have been
running for a while and have become comfortable with ex-
isting ways of recording or editing audio programs, do not
want to change their processes drastically and prefer sim-
ple plug-n-play enhancements. Thus, any solution for CR
stations must allow them to choose a setup suited to them.

Local fault management: A radio station setup can get
quite complicated, with audio cabling between the mixer
and various other components, power supply connections,
and LAN and Internet setup. This complexity is evident
from Figure 1! It is hard for CR stations to find staff with
sufficient skills to be able to diagnose faults and failures
in such complicated setups. Sufficient trouble-shooting and
diagnostic methods should therefore be included upfront so
that trivial problems can be repaired locally.

We have designed, developed, and deployed a hardware
and software platform in line with these goals. Our open-
source system is currently running in nine community radio
stations in India. In this paper, we describe our experi-
ence with building GRINS (Gramin Radio Inter Networking
System), and outline various novel techniques we used to
diagnose faults and monitor the performance of our system.
Our contributions are as follows:

• We have identified the technology needs of CR sta-
tions, including the need to leverage the growing pen-
etration of mobile phones, and have designed GRINS
accordingly (Section 1).

• We highlight a simple and easily replicable experimen-
tal setup to study the performance of GRINS on low-
end commodity hardware. This setup also helped us to
identify and eliminate bugs in various open-source soft-
ware components that we were using. Similar testbeds
can be used to evaluate the performance of other audio
based systems (Section 4).

• We outline a formal framework to describe radio sta-
tion configurations, which to the best of our knowledge
has not been done before (Section 5).

• We use the framework to build a generic fault diagnosis
utility which generates a series of simple troubleshoot-
ing questions to debug a given configuration. We also
use the framework to develop metrics to choose a good
radio station configuration from among many possible
options (Section 5).

The rest of the paper is organized a follows. Section 2
provides a brief introduction to GRINS and its features,
and Section 3 describes its architecture. In Section 4, we
highlight the primary challenge of running GRINS on low-
and commodity hardware and describe a novel experimental
setup to its study performance. The following section de-
scribes the formal framework and its use to diagnose station
faults. Section 6 discusses the larger impact of our work and
plans for future work.

2. GRINS OVERVIEW
We first describe the typical working of a CR station to

set the context:

Content creation: This is mostly done offline and involves
recording programs in the studio or in the field, and editing
the audio to make it ready for broadcast.

Broadcast: The station operator creates playlists to sched-
ule pre-recorded programs for broadcast, and may also in-
troduce brief slots to speak live on air or take phone calls.

Content management: Recorded content needs to be
archived and tagged to make it searchable for later.

Community interaction: Community interaction at CR
stations is an on-going effort to involve the community in
various activities of the CR station, such as to solicit feed-
back about programs, entertain requests for repeat telecasts,
hold live phone conferences and discussions, etc.

GRINS is an automation system for radio stations that
makes many of these tasks easier. It provides a single console
to perform a large variety of operations, including:

• play out programs on air,

• preview programs while another program is playing,

• speak live on air and record the live speech,

• monitor the broadcast audio on headphones (monitor
headphones are used by the station operator to listen
to audio going on air),

• receive and make phone calls, record conversations

• record voice messages from callers when telephony is
not in active use



• add/edit metadata for programs, and

• search for programs using faceted metadata search [4]

• automatically diagnose cable and hardware faults

Figure 2: A radio station setup using GRINS: The
single board computer (SBC) running GRINS is
connected to the mixer, which is in turn connected
to the transmitter. The Telephony adapter allows
connecting the PSTN line to the SBC.

We are also building SMS processing and IVR capability
in GRINS, to enable applications like automated feedback
collation and polling to help the radio station know its au-
dience better.

Figure 2 shows the schematic of how a GRINS box typ-
ically plugs into a radio station in a single machine con-
figuration. The GRINS playout soundcard and an exter-
nal microphone connect to the inputs of an audio mixer for
broadcast, and the combined mixer output goes to the FM
transmitter. A duplicate of the mic feed is also brought into
GRINS for archival. Similarly, a duplicate of the broadcast
feed (∼ monitor feed) is brought in separately through a
different sound card, and directed to the headphones. The
same headphones are also used to preview audio, so that
the operator does not have to physically change over to a
different set of headphones for monitoring and previewing.

An Analog Telephony Adapter (ATA) is used to connect a
PSTN line to the GRINS box. The operator can pick up the
call through the GRINS console itself, and talk to the caller
using the same set of headphones as those used for preview.
The call is automatically archived, and can also be put live
on air by redirecting both the incoming and outgoing call
legs to the playout soundcard in GRINS. Conferencing is
supported if the station has multiple phone lines.

All content including programs scheduled for broadcast,
archived audio from live speech, and archived phone calls,
are made available in the GRINS library. Metadata such
as title of the program, tags, and associated caller informa-
tion can be maintained through an easy-to-use interface, and
a faceted metadata search is provided for retrieval of con-
tent. A listener database is provided to help stations build
a profile of their listeners. This database automatically gets
populated when a new caller calls for the first time or a new
contact is associated with a program.

We next describe the GRINS system architecture, detail-
ing several design decisions and their implications.

3. SYSTEM ARCHITECTURE
GRINS has a service oriented architecture [7]. Different

services have been defined for specific tasks, such as an au-
dio service for audio playout, archiver service for archiving
live speech, telephony service for phone call management,
library service for content management, etc. Each service
is decoupled from other services and maintains its own in-
ternal state to expose information about its readiness to
perform tasks. A lightweight inter process communication
(IPC) mechanism, using TCP sockets, enables communica-
tion between services.

Decoupling of services makes the system more robust.
With this design, even if a service fails due to a bug or an
unexpected crash in an external open-source component, the
rest of the system remains unaffected. Coupling this with an
auto-restart mechanism in case of service failure potentially
increases the uptime of the system, a critical requirement
for rural regions.

The IPC mechanism allows services to all run off the same
machine, or be distributed across different machines. For ex-
ample, the phone service can be chosen to run off a different
machine, or the library service can be moved elsewhere, as
long as the mixer supports the necessary audio connections.
This flexibility in deployments allows deployment of GRINS
at stations with different requirements.

Flexibility of GRINS deployments can sometimes lead to
more than a dozen possible ways to plug GRINS into a given
radio station setup! Later in Section 5, we present a formal
framework to describe all possible configurations in a given
setting, and introduce certain metrics to choose the best
configuration.

The same framework is also used to develop a fault di-
agnosis utility. Faults can occur because of a wide vari-
ety of reasons such as loose cable connections, or a mal-
functioning LAN, or software crashes, etc, and are hard to
identify specifically. Our diagnosis utility helps make logical
inferences to locate the exact point of failure.

Figure 3: Different audio flows in GRINS

As may be already evident, GRINS has to handle many
audio flows running in parallel. For example, a flow for play-
out from disk to soundcard, a flow from soundcard to disk for
recording the operator’s speech, two flows between sound-
cards and the telephony hardware corresponding to phone
calls, and two flows from the telephony hardware to the disk
for recording phone conversations. Figure 3 shows several
possible flows in GRINS in a typical single-machine setup.
Given our requirement to use low-end commodity hardware,



it becomes a challenge to ensure good audio quality with
multiple flows running in parallel. In the next section, we
describe novel experimental setups we used to study latency
and other metrics to make sure that GRINS works well even
under such constrained scenarios.

4. EVALUATING LOW-COST SETUPS
We observed a variety of issues while running GRINS on

low-end commodity hardware, most of which are unlikely
to appear in high-end devices. For example, encoding audio
while recording live speech, or sample rate conversion during
playback, consumed unacceptably high amount of CPU [6] .
Similarly, scenarios where incoming audio from one sound-
card was redirected to the output of another sound card,
resulted in audio clicks and latency. Audio clicks are gaps
when the soundcard plays out silence because audio sam-
ples were not provided to it in time. Clicks also occur in
recorded audio when audio samples are not collected from
the soundcard in time. These are typical situations when
interrupts are missed because the CPU is not able to service
them quickly enough. While clicks are definitely undesirable
in broadcast audio, high latency in telephone conversations
is also unacceptable. High latency during live speech can
also be uncomfortable for the operator if she hears her own
voice on the monitor headphones after a slight delay.

We used a novel experimental setup for measuring clicks
and latency. This benchmarking exercise helped us identify
and eliminate several bugs in different open-source compo-
nents we were using. Eventually, on the hardware described
below, we were able to completely eliminate audio clicks
and reduce the latencies to quite acceptable values. We first
present details about the audio architecture in Linux based
systems, and then describe our setup and results.

4.1 Audio Routing in GRINS
Figure 4 shows a high level operation for line-in to line-

out audio routing in GRINS. GRINS uses Gstreamer (www.
gstreamer.net) as its media library and ALSA (www.alsa-
project.org) as the soundcard driver. In the capture part
shown to the left of the figure, the soundcard generates an
interrupt when it has enough data to push to ALSA. The
CPU services this interrupt and passes the control to ALSA,
which collects the data and writes it in its internal buffer.
Gstreamer makes blocking read calls to ALSA, which return
when there is any data available in the ALSA buffer. We use
input interrupt inter-arrival time (IIT ) to denote the time
between two successive interrupts generated by the sound-
card for capture. Input IIT dictates the rate at which the
CPU needs to service interrupts for audio capture.

On the playout part shown to the right of the figure, user
processes push data through blocking write calls, which re-
turn as soon as the data is written to the ALSA buffer. Au-
dio is then written from the ALSA buffer to the soundcard
in response to interrupts from the soundcard. Analogous to
input IIT , the output IIT dictates the rate at which the
CPU needs to service interrupts for playout.

The IIT s directly impact audio clicks and latency. In the
case of clicks, as IIT decreases, the number of interrupts
to be serviced by the CPU increases. This increases the
chances of the CPU missing an interrupt and causing clicks.
IIT

′
s influence on latency is more subtle. During capture,

the first interrupt is received by ALSA an IIT amount of
time after the capture has actually begun. This causes a

Figure 4: Audio transfer from line-in to line-out of
a soundcard in GRINS

latency of at least one input IIT . On the other hand, during
playout, ALSA waits for a Start Delay (SD) duration before
beginning playout. SD is measured in multiples of output
IIT and is usually set equal to the size of ALSA output
buffer. This is done to avoid buffer under-runs immediately
after a playout begins. Thus, delays are caused at both input
and output, and are proportional to their corresponding IIT

values.
Next, we describe the experimental setup for measuring

clicks and latency. The key insight from the experiments is
that while latency increases monotonously with increase in
IIT s, number of clicks reduce with increase in IIT s. Thus,
a balance needs to be achieved between the two.

4.2 Experiment Setup and Methodology
We used a Via EPIA LN10000 EG mainboard with a 1GHz

processor and Via VT8237 soundcard as our test machine.
The machine ran Ubuntu 8.10 with the ALSA sound driver
version 1.0.17. The Gstreamer multimedia framework was
used for audio play-out, recording, and routing audio from
line-in to line-out across soundcards. The Asterisk 1.6.1.4
(www.asterisk.org) PBX software was used for telephony
management, with a PSTN line terminating in an exter-
nal Analog Telephony Adapter (ATA) connected to the Via
board over the LAN.

4.2.1 Line-in to Line-out routing latency
Figure 5 shows the experimental setup for measuring la-

tency of line-in to line-out audio routing. The line-out of
a high-end machine H1 is connected to the line-in of the
GRINS box, and the line-out of the GRINS box is con-
nected to the line-in of the second high end machine H2.
The GRINS box routes audio from its line-in to its line-out
using Gstreamer. A second audio path is created by con-
necting cable A3 directly from the line-out of H1 to line-in
of H2. The high-end machines H1 and H2 are assumed to
have enough computational capabilities to read and write
audio without causing any clicks. H1 plays audio on its
line out consisting of a sequence of spikes separated by an
interval of 2 seconds. This audio travels to A3 with neg-
ligible delay, but traverses the GRINS box incurring some
latency. Spikes from both the paths are recorded at H2.
The difference between the start of the spike at A3 and its
corresponding spike at A2 gives the latency of routing audio
through the GRINS box.

For measuring the impact of input IIT , we fixed the value
of output IIT to 10 ms and varied the input IIT from 2 ms
to 50 ms. Similarly, for measuring impact of output IIT , we



Figure 5: Experimental setup for measuring latency
in audio routing

fixed input IIT at 10ms and varied output IIT . The Start
Delay (SD) at line-out was set to 3 times the output IIT for
all the experiments 1. Audacity (audacity.sourceforge.net)
was used to measure the latency manually at one millisecond
accuracy. We conducted each experiment 10 times and took
the average of the results.

Figure 6: Impact of input and output interrupt
inter-arrival times (IIT s) on audio routing latency.
Latency monotonously increases with increase in
IIT s.

Figure 6 shows the results of these experiments. As ex-
pected, both input and output IIT s have a linear impact
on latency, but the change in output IIT impacts latency
more than the input IIT because of the Start Delay on the
output. IIT values of up to 20ms seem tolerable for good
audio quality. However, note that these results correspond
to benchmarking a single audio flow, whereas in GRINS we
need to run up to four audio flows at the same time. We also
conducted experiments for this maximal setup and eventu-
ally chose IIT values of 15ms, which gave us latencies for
different flows as shown in Table 1. IIT values of 15ms also
eliminated clicks, as we describe in the next section. We
do not present the detailed experimental setup for brevity;
details are available in [6].

These latency values will of course be different with differ-
ent hardware; our contribution here has been to develop a
novel experimental setup that can be used to evaluate other
audio-based systems.

4.2.2 Clicks
We used a similar setup as above to study the effect of IIT

on clicks, with the difference that A3 was no longer needed

1This value of SD was chosen after micro-benchmark exper-
iments showed that higher values of SD increased latency
while lower values caused clicks

Table 1: Latencies observed in the maximal setup for
GRINS. Input and output IIT s were set to 15ms.
Audio Flow Latency

(ms)

Soundcard line-in to soundcard line-out 94± 21
Soundcard line-in to remote caller 41± 8
Remote caller to soundcard line-out 64± 11

and H1 now played out a single-tone sine-wave audio. Gaps
in the recorded audio at H2 reveal clicks caused by line-in to
line-out routing on the GRINS box. Each experiment was
run for 3 minutes, repeated 5 times each, and the results
were then averaged. The output IIT was kept the same as
the input IIT .

(a) Audio clicks as seen in
a spectrogram

(b) Waveform of a recorded
click

Figure 7: Audio clicks

We compute a spectrogram of the audio to identify clicks.
Since the original audio is a single sine wave, the spectro-
gram has only one hot line corresponding to the frequency
of the tone. However, when a click occurs then there is a
sudden disruption in the waveform. This is captured by the
Fourier transform as several frequency components, making
all the frequencies hot for that part of the audio. As a result,
clicks are distinctly visible in the spectrogram and can be
counted. Figure 7 shows a spectrogram, and a sample audio
waveform with one click.

Figure 8: Impact of input and output interrupt
inter-arrival times (IIT s) on clicks in audio routing.
Number of clicks reduce with increase in IIT s.

The results of click-measurement experiments are shown
in Figure 8. The number of clicks steadily reduce with in-
crease in IIT s. No clicks are observed at IIT s of more



than 10ms. We used similar setups to evaluate clicks in
telephone conversations, and under high CPU loads. Af-
ter some amount of debugging, we eventually succeeded in
eliminating clicks altogether. Thus, the simple and novel ex-
perimental setup allowed us to guarantee the service quality
that GRINS can deliver, and also helped us discover and
resolve bugs in open-source software.

5. FORMAL REPRESENTATION
We described earlier that we designed GRINS in a service-

oriented manner so that it could be deployed flexibly in a
variety of settings. Variance in the number of machines,
availability of mixer, and type of mic lead to a large number
of different radio station configurations. Too many options
can easily confuse a person wanting to setup a radio sta-
tion. Thus, our first goal is to enumerate these options and
compare them in a meaningful manner.

Recall that it is hard to find technically skilled people
in rural areas. At the same time, it is important to resolve
technical problems locally as much as possible, to avoid long
travel times and costs of visits by technician from cities.
Therefore, our second goal is to build diagnostic capabil-
ities to pin-point the exact point of failure and guide the
local staff to resolve simple issues such as faulty cables and
improper connections.

To achieve these two goals, we have developed a formal
framework describing radio station configurations. Based
on this framework we have defined metrics for comparing
configurations. We have also developed a diagnostics utility
that takes a configuration as its input and, through a series
of questions, guides the station operator to identify faults.
We next present our framework for describing radio station
configuration.

5.1 Framework
As described in the previous section, GRINS controls sev-

eral audio flows. We define a flow formally and use this
definition to describe a configuration.

Element: An element is any hardware or software unit that
can generate or consume audio. For example, a headphone
is an element that consumes analog audio, while a soundcard
is an element that consumes digital audio and generates its
analog form, and vice-versa. Mic, mixer, FM transmitter,
file system, and the Asterisk PBX system are all examples
of elements.

Channel: A channel defines the form of audio an element
can consume or generate. Channels can be of different types:

• Analog: A mic has an analog outgoing channel.

• Digital: The Gstreamer element has digital incoming
and outgoing channels.

• VoIP: A special channel to describe communication
between Asterisk and an Analog Telephony Adapter
(ATA).

Connection: A valid connection from element A to element
B is possible if there exists an outgoing channel of A, OA

and an incoming channel of B, IB such that OA and IB are
of the same type. For example, a Gstreamer element can be

connected to a soundcard, but a Gstreamer element can not
be connected to a headphone element.

Flow: A sequence of connected elements is a flow. Figure 9
shows some example flows used in GRINS.GRINS requires
all of the following flows to be enabled to run correctly:

• Playout: File-system to the FM transmitter

• Archive: Mic to the file-system

• Preview: File-system to the headphone

• Monitor: Mixer output to the headphone

• Mic: Mic to the FM transmitter

• Tele-Playout: Telephony hardware to the FM trans-
mitter

• Tele-Preview: Telephony hardware to the headphone

• Tele-Archive: Telephony hardware to the file-system

• Tele-Mic: Mic to the telephony hardware

The opportunity for flexibility and choice of different con-
figurations in GRINS arises from the different ways in which
these flows can be enabled. For example, a mic-flow can be
enabled by either plugging the mic into the playout machine,
or plugging it into the mixer. In the former case, the mic au-
dio has to be passed in through a soundcard to a Gstreamer
routing module and then to the soundcard that feeds the
FM transmitter. In the latter case, the mixer may be feed-
ing audio directly to the transmitter, and so the mic audio
need not be brought into GRINS at all (unless the audio
needs to be archived).

(a) Tele-Preview flow

(b) Archive flow

Figure 9: Examples of flows of a configuration

Configuration: A configuration is defined by a collection
of the nine flows listed above. A configuration is considered
valid if all the flows in the collection are enabled.

5.2 Configuration Enumeration
We have developed a tool using Prolog to automatically

generate valid configurations. It takes as input a 4-tuple
that corresponds to the answer of the following questions:

• Whether or not a mixer is available (yes/no)

• Whether the mic can plug into a mixer (∼ XLR con-
nector), or into the soundcard (∼ TRS connector)

• Whether the FM transmitter is external (ext), or can
be mounted as an internal PCI card (int)

• The number of machines that can be used in the setup



Using the 4-tuple input and above defined framework the
tool generates all valid configurations that can be compared
with each other. We skip the details for brevity and direct
the interested readers to [10] for more information.

5.3 Comparing configurations
To enable meaningful comparison of configurations we clas-

sify them based on three parameters: cost, performance, and
debugability. Although a combined utility score can be cre-
ated, we choose to simply classify the configurations as either
good or bad based on some rules of thumb.

• Using more than four soundcards is considered costly.
We noticed that out of all possible configurations, 80%
could be enabled with four or less soundcards, thereby
rendering other solutions as relatively ineffective.

• Flows which have three or more audio conversions (dig-
ital to analog and digital to VoIP) are considered poor
on latency. As observed in Table 1, these conversions
increase latency in the flow.

Figure 10: Classification of all single machine con-
figurations based on cost and performance.

The debugability metric is described in the next section.
Fig. 10 shows the classifications based on cost and perfor-
mance for three different values of input 4-tuple. The graph
shows that for a given input 4-tuple several configurations
are possible. However, only a few of those may be usable
when pruned using the thumb-rules above. For example, for
the first input 4-tuple only seven out of 12 possible configu-
rations are good in terms of cost and performance.

5.4 Diagnostics
We next describe how the formally expressive framework

can be used for fault diagnosis, and then apply these insights
to develop the debugability metric for classifying the quality
of a radio station configuration.

We begin by noting that if a particular flow malfunctions,
then a fault could lie either with some element, or with a
channel connecting two elements. For example, if the audio
being transmitted on air cannot be heard on the monitor
headphones, then either (a) the soundcard used for moni-
toring may not be connected, or (b) the cable going into the
monitor soundcard may be disconnected, or (c) the cable
coming out of monitor soundcard and going to the monitor
headphones may be disconnected. Overall, if there are n el-
ements, then as many as O(22n) possible faults could arise.

Clearly, if a flow functions correctly it implies that all its con-
stituent elements and channels are functioning properly. We
use this principle to break the GRINS network of flows into
components that can be tested separately. Some of these
tests may be automated by creating single-tone sine-wave
audio at one end and performing a Fourier transform at the
other end, while some may be manual requiring the user to
either speak something into the mic or listen to audio on
their headphones or radio sets. The goal is that after some
number of tests, the inference algorithm should be able to
identify likely points of failure in the system. We next de-
scribe in more detail the steps that the algorithm follows.

Phase 1 - Test cases: In the first phase, the algorithm
takes configuration information as input to generate test
cases. We define a test case as an evaluation of a subse-
quence of elements and connections in a flow such that the
subsequence starts at some software element and ends at
some tangibly observable element. As shown in Figure 9(a),
an example of a test case is a subsequence of Tele-Preview
flow that starts from Asterisk and ends in the Head phones,
and can be observed by listening to audio on the headphones.
A test case may also be a subsequence that starts at some
tangible input element and ends at a software element, for
example, from Mic to Gstreamer in Archive flow from Fig-
ure 9(b). The result of each test case is assumed to be either
true or false.

Phase 2 - Diagnosis: The algorithm iteratively orders the
test cases in decreasing order of their lengths, and in the case
of a tie it prioritizes tests that do not require user input. The
longest test cases are preferred because if the test is success-
ful, it will indicate that all the elements and connections in
that test were working correctly, and subsequences of the
test can be eliminated.

The algorithm eventually comes up with a classification of
elements and connections that are guaranteed to be working
correctly, or not working correctly, or those that are ambigu-
ous.

5.5 Debugability
We next describe the debugability metric that can be used

to rank configurations, together with the cost and perfor-
mance rules stated in Section 5.3.

Figure 11: Classification of single machine configu-
rations based on debugability. Only configurations
found good based on cost and performance are con-
sidered.



Given a configuration, we simulate the diagnosis algorithm
considering all possible results for the tests. In each case,
we observe the number of elements or connections that are
left ambiguous = a, and define the ambiguity for this case
as (2a − 1), denoting the number of possible eventualities
when an element or connection could be faulty. For the
given configuration, the overall ambiguity is then defined as
the harmonic mean of (2a − 1).t, where t is the number of
tests executed in each case. The debugability of a configu-
ration is then taken as the inverse of the ambiguity. Thus,
higher debugability score indicates that a configuration is
more easily debugable.

We evaluated, through simulations, the debugability of all
single machine configurations as in Fig. 10. The 70%ile of
the scores was taken as the cut-off to classify configurations
as good or bad in terms of debugability. Fig. 11 shows the
classification of all configurations that were found good in
Fig. 10. The debugability metric can be used to prune the
number of good configurations derived from cost and per-
formance metrics. More stringent filtering can be achieved
by using higher cut-off percentile. Thus, a thumbrule based
on debugability can be added to the configuration classifi-
cation rules stated in Section 5.3 to find the best possible
configuration. Some interesting cases are presented in [10]
where configurations are cheaper but can actually be harder
to debug.

6. IMPACT AND FUTURE WORK
Our experience with GRINS deployments and feedback

from its users indicates that radio stations indeed value its
features. While a formal usability study is underway and
will be the subject of a different paper, we present here some
anecdotal evidence and insights into GRINS usage.

GRINS has been deployed at nine CR stations across In-
dia, and the flexibility in deployment allowed by our ar-
chitecture has been extremely useful all across. Three of
our setups run in a two-machine configuration mode, with
the UI and playout services running on a Windows machine
and the rest of the services on the GRINS box. This was
because these stations had been operational since a while
and preferred using Windows, instead of switching to a pure
Linux-based environment. All other setups are in new radio
stations, and are hence single machine setups where the staff
were trained on Linux systems upfront.

Prior to using GRINS, the stations in India were using
media players such as Winamp and iTunes to schedule pro-
grams. This did not allow the station operator to schedule
broadcast at a pre-specified time, or manage time slots of
when to speak live on air. Several stations now schedule
their broadcast to start automatically as early as 6 a.m. and
have the convenience of not being in the station that early.
Stations also routinely use “live slots” to explicitly define the
time when they want to speak live on air.

Before using GRINS, content was stored in Windows fold-
ers, often distributed across multiple machines, making search
and retrieval hard and heavily reliant on personal memory.
GRINS provided powerful metadata recording and content
search mechanisms to the stations. However, very few sta-
tions have taken the effort of adding metadata to programs.
Additionally, stations still continue to search for programs
using folders. Initial insights suggest that the reluctance
to enter metadata and use faceted search is related to re-
sistance in changing existing processes. We hope to gain a

better understanding of this challenge and possible remedies
through more detailed interviews with users.

Before GRINS, telephony was hard and significant man-
ual operations had to be performed on the mixer to archive
the call or put it on air. In addition, there was no way of ob-
taining and managing caller-id of the callers. Now, several
stations have reported using integrated telephony feature of
GRINS to record folk song requests, collect traffic informa-
tion, and log civic amenities related complaints. One station
had recorded a message over telephony, from a local celebrity
encouraging listeners to vote in local elections. A second sta-
tion had put phone call with traffic police commissioner live
one air, during which he had explained changes in traffic
regulations for the common wealth games.

We are currently also building new features in GRINS for
SMS and voice messaging for stations to open more ways
of engaging with their communities. Yet another direction
we plan to pursue is to help CR stations develop good con-
tent. Creating quality content is hard because of the lack of
knowledgeable resource personnel in rural areas, and poor
access to information sources like libraries and the Internet.
Further, creating quality radio content is a hard-to-master
skill. It requires considerable thought in conceptualization
to choose the best format of the program, prepare a script,
and finally record and edit the audio content. Many staff
from different CR stations in India do come together for
periodic workshops, but it is cost prohibitive.

We believe that a suitably designed knowledge-sharing
platform, augmented with voice forums, could greatly help
CR stations learn from each other and sustainably produce
good content. We intend to build such a platform to enable
sharing of content, expertise and experiences among CR sta-
tions. Owing to intermittent Internet connectivity available
at CR stations, the platform will be designed to operate in
disconnected environments. Content browsing will be en-
abled through caching and intelligent prefetching, while CD
or USB memory stick will be used for heavy data transfer.

7. RELATED WORK
There have been several successful attempts at using tech-

nology to assist social media in developing regions. Avaaj
Otalo [9] provides an asynchronous telephony based system
for farmers to ask questions and answer each other’s ques-
tions by dialing into a toll-free number. Digital Green [3]
pioneered a novel pedagogy for teaching better agricultural
practices through mediated sessions where farmers watch
videos of other fellow farmers practicing new methods. Video
Volunteers [1] trains rural community members in video pro-
duction on issues of relevance to local communities. Comple-
mentary to these efforts, we focus on building technologies
for community radio.

Some features provided by GRINS such as playout and
scheduling of audio programs is similar to those offered by
other radio automation systems. Some of these are also
free and open source like Campcaster (www.sourcefabric.
org), but most like WideOrbit Automation for Radio (www.
wideorbit.com), and Nautilus Jukebox (www.nautilus.hu)
are licensed and prohibitively expensive for CR stations.
However, GRINS goes much beyond these systems with inte-
grated telephony management capabilities, good audio qual-
ity guarantees on computationally low-end machines, diag-
nostic capabilities to overcome the lack of technical expertise
in rural areas, and flexibility in deployments.



Our approach to formally represent a radio station con-
figuration is similar to work on expressing communication
networks [5]. Simple primitives for elements and ports, and
operations for local lookup of IP headers or remote lookup
of DNS servers, were used to express the entire network
stack and several routing protocols. Our approach is, how-
ever, specifically tailored to the radio station context, and
has been used to develop a practically realizable system.
[2] has proposed a similar abstraction to represent routers,
switches, hosts, etc as devices with communication pipes
between them, although the focus was more on the devel-
opment of a management plane to exercise policies on the
network without being concerned about the implementation
details. We plan to use these ideas in future work when
we will consider live transmission across a network of radio
stations, where some stations may open phone connections
to each other while others may stream live audio, provided
they have good Internet connectivity.

8. CONCLUSION
In this paper, we described the ICT needs of community

radio stations including the need to integrate mobile phones
with community radio, and outlined the design of GRINS to
meet these requirements. We also presented an experimen-
tal setup to evaluate audio systems, and a formal framework
to express and diagnose radio station configurations. Many
insights from our work will be applicable to other techno-
logical systems slated for deployment in similar developing
region contexts. The main message however that we would
like to convey is that it is extremely hard (but fun) to build
technological systems for developing regions. Constraints
presented by the reluctance of users to change their exist-
ing practices, careful thought on robustness and cost, and
a good understanding of the requirements are all essential
to build usable systems. Now that we are meshed closely in
the community radio landscape of India, we are looking for-
ward to building more applications to nurture and support
the CR movement.
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